DECOMPOSITION OF CONGRUENCE MODULAR ALGEBRAS INTO ATOMIC, ATOMLESS LOCALLY UNIFORM AND ANTI-UNIFORM PARTS

Abstract

We describe here a special subdirect decomposition of algebras with modular congruence lattice. Such a decomposition (called a star-decomposition) is based on the properties of the congruence lattices of algebras. We consider four properties of lattices: atomic, atomless, locally uniform and anti-uniform. In effect, we describe a star-decomposition of a given algebra with modular congruence lattice into two or three parts associated to these properties.

Keywords: universal algebra, algebraic lattice, congruence lattice, atomic lattice, modular lattice, uniform lattice, subdirect product, star-product, decomposition of algebra

1. Introduction

In this paper we study properties of modular algebraic lattices in order to obtain a ⊗-decomposition of algebras into factors with specific congruence properties. The famous Grätzer-Schmidt theorem states that every algebraic lattice is the congruence lattice of an algebra, so we study algebraic lattices having in mind congruence lattices. In [8] there was introduced a notion of a ⊗-product of algebras as a special kind of a subdirect product. In the same paper, a notion of dimension of algebras was given and, in the case of algebras with modular congruence lattices, the description of a ⊗-decomposition of algebras into one-dimensional factors (i.e. algebras with their congruence lattices being uniform) and the one (if exists) 0+-factor (i.e. algebra with its congruence lattice being anti-uniform) was described.
Modular lattices are very interesting because many algebraic structures (groups, rings, modules, vector spaces, lattices, Boolean algebras) have modular congruence lattices.

We consider four properties of elements in lattices, namely, being an atom, uniform element, uniform atomless element and anti-uniform element. In Section 2 we recall some useful notions and facts of universal algebra and lattice theory and we give also useful notions and facts concerning ⊗-decomposition (from [8]). Section 3 contains technical results for modular algebraic lattices which are used in formulation and proving main results of this paper, i.e. ⊗-decomposition theorems, in the last section.

2. Preliminaries

An algebra A of type F is an ordered pair (A, F), where A is a nonempty set and F is a family of finitary operations on A.

A binary relation θ on A is called a congruence on an algebra A of type F if it is an equivalence relation on A satisfying the compatibility property i.e. for each n-ary operation $f \in F$ and elements $a_i, b_i \in A$, if $(a_i, b_i) \in \theta$ holds for $i = 1, \ldots, n$ then $(f(a_1, \ldots, a_n), f(b_1, \ldots, b_n)) \in \theta$. The set of all congruences on an algebra A is denoted by $\text{Con} A$. It is known that $\text{Con} A$ ordered by inclusion is an algebraic lattice which is called the congruence lattice of A. The least element 0 is the identity relation and the greatest element 1 is $A \times A$. According to terminology like ‘congruence modular algebra’ and ‘congruence distributive algebra’, we will say that an algebra is a congruence ‘Property’ algebra if its congruence lattice has the property ‘Property’.

An algebra A is a subdirect product of a family $(A_i)_{i \in I}$ of algebras if A is a subalgebra of the product $\prod (A_i)_{i \in I}$ and the projection maps $\pi_i : A \to A_i$ are epimorphisms for each $i \in I$.

We use two important properties of congruences. The first one states that if $\theta = \bigcap \{\theta_i\}_{i \in I}$, then A/θ is a subdirect product of the algebras $(A_i/\theta_i)_{i \in I}$. Hence if $0 = \bigcap \{\theta_i\}_{i \in I}$, then A is a subdirect product of the quotient algebras $(A/\theta_i)_{i \in I}$. The second one is The Correspondence Theorem which states that for any algebra A and $\theta \in \text{Con} A$ the interval $[\theta, 1]$ is isomorphic to $\text{Con} A/\theta$.

We assume throughout the paper, that L is an algebraic lattice with the least element denoted by 0 and the greatest element denoted by 1, and where $0 \neq 1$.

This yields that if such an L is a congruence lattice of an algebra A, then A is nontrivial, i.e. it has at least two elements. If L is algebraic then it is complete by definition. In complete lattices we have $\bigvee \emptyset = 0$, $\bigwedge \emptyset = 1$, $\bigvee L = 1$, $\bigwedge L = 0$.

For facts not recalled here see [1], [3], [8].

2.1. Omitting relation, uniform and anti-uniform elements

The relation of omitting elements is a kind of complementation. We say that an element $y \in L$ omits $x \in L$ iff $y \wedge x = 0$. An element $y \in L$ omits a nonempty subset $X \subseteq L$ iff y omits every element $x \in X$. If $X = \emptyset$ then every element $y \in L$ omits X.

For any subset $X \subseteq L$ there exists a maximal element omitting X. The set of all maximal elements omitting X is denoted by M_X and elements of this set are denoted by M_X. If $X = \{x\}$ then the set of all maximal elements omitting x is denoted by M_x and M_x denotes any element of M_x.

We consider also maximal elements in L omitting a given element X using notation M_X^\oplus for any element of the set M_{MX}. Exceptionally, if $X = \{x\}$ then for a given M_x, M_x^\oplus denotes any element of the set $M_{MX} = \{z \in M_{MX} : x \leq z\}$. Consequently, for given M_X and $M_X^\oplus \in M_{MX}$, the symbol $M_X^{\oplus \oplus}$ denotes any element of the set $M_{MX}^\oplus (M_X^{\oplus})$.

For example, look at the lattice on Fig.1. Here $M_a = M_{a\wedge a} = \{b, c\}$, $M_a^\oplus = M_{a\wedge a}^\oplus = a$ and $M_{\{a,b\}} = c$, $M_{\{a,b\}}^\oplus \in \{a, b\}$. It is shown in [8] that in algebraic modular lattices, for any fixed M_X, $M_X = M_X^{\oplus \oplus}$ independently of the choice of M_X^\oplus. Moreover, M_X is uniquely determined for any X in algebraic distributive lattices.

We recall here the definition of a uniform element in a lattice, known from papers of Grzeszczuk and Puczyński [4], [5]. An element $u \in L \setminus \{0\}$ is uniform in L if $x \wedge y \neq 0$ for any $x, y \in (0, u]$. A lattice L is uniform if 1 is uniform.

The set of all uniform elements in L will be denoted by $U(L)$. The set of all atoms of L will be denoted by $A(L)$. Every atom is uniform, so $A(L) \subseteq U(L)$. A lattice L is atomic if for any $x \in L \setminus \{0\}$ there is an atom $a \in L$ such that $a \leq x$. A lattice L is atomless if $A(L) = \emptyset$. A uniform element u will be called atomless, if the interval $[0, u]$ is an atomless lattice. The set of all atomless uniform elements in L will be denoted by $N(L)$, and obviously, $N(L) \subseteq U(L)$. Thus $A(L) \cap N(L) = \emptyset$ and $A(L) \cup N(L) \subseteq U(L)$.

A lattice L is locally uniform if for any $x \in L \setminus \{0\}$ there exists a $u \leq x$ such that $u \in U(L)$.
Every chain lattice is uniform. The lattice of all subgroups of the group of integers \mathbb{Z} is atomless uniform. The lattice of all subgroups of the group $\mathbb{Z} \times \mathbb{Z}$ is locally uniform, but not uniform. Generally, the lattice of all subgroups of the power \mathbb{Z}^n, $n \geq 2$, is locally uniform and there are infinitely many uniform elements in \mathbb{Z}^n.

An element $t \in L \setminus \{0\}$ is anti-uniform in L iff $U([0, t]) = \emptyset$. The set of all anti-uniform elements in L is denoted by $T(L)$. By definition every anti-uniform element in L omits $U(L)$, thus $U(L) \cap T(L) = \emptyset$. A lattice L is anti-uniform if 1 is anti-uniform. The Lindenbaum-Tarski algebra with an infinite set of variables is an anti-uniform lattice.

An element $e \in L$ is called essential in L if $x \land e \neq 0$ for every $x \in L \setminus \{0\}$. The 1 is essential in L. If an x is essential in L then $M_x = 0$. We say that an element $e \in L$ is essential in an element $a \in L$ iff $e \leq a$ and e is essential in the interval $[0, a] \subseteq L$.

2.2. Modular lattices

A lattice L is modular iff for any $x, y, z \in L$,

if $z \leq x$ then $x \land (y \lor z) = (x \land y) \lor z$.

Recall some properties of modular lattices.

M1 A lattice L is modular iff it satisfies the shearing identity:

$$x \land (y \lor z) = x \land ((y \land (x \lor z)) \lor z)$$

M2 A lattice L is modular iff it satisfies the identity:

$$(x \lor y) \land (x \lor z) = x \lor (y \land (x \lor z))$$

M3 For any modular lattices L the Isomorphism Theorem holds, i.e. for any $a, b \in L$ the intervals $[a, a \lor b]$ and $[a \land b, b]$ are isomorphic and the isomorphism is $\varphi_b(x) = x \land b$, while the inverse isomorphism is $\psi_a(x) = x \lor a$.

We give below two facts (see [8]) useful in our proofs.

FM1 Let L be a modular lattice. Let $a, b, c \in L \setminus \{0\}$ be such that $a \land b = a \land c = b \land c = 0$ and let $\alpha = (a \lor b) \land (c \lor b) > b$. Then $\alpha \land a \neq 0$ and $\alpha \land c \neq 0$ and the intervals $[0, \alpha \land a]$, $[b, \alpha]$, $[0, \alpha \land c]$ are isomorphic (see Fig. 1.).

FM2 Let L be a modular lattice. Then

1. $x \lor M_x$ is essential in L for any $x, M_x \in L$,
2. if $\emptyset \neq X \subseteq L$ then $M_X \lor M_X^\circ$ is essential in L for any M_X, M_X°.
2.3. Independent sets, star-sets and star-products

The idea of introducing independent sets has its origin in linearly independent sets of vectors. There are several definitions of independent sets in lattices (see e.g. [3], [6], [9], [5]). We say that a subset $X \subseteq L \setminus \{0\}$ is independent if $|X| = 1$, or $|X| > 1$ and for every $x \in X$ it holds that $x \land \lor(X \setminus \{x\}) = 0$.

We will use notation $\overline{y} = \land(Y \setminus \{y\})$ and $\overline{Y} = \{\overline{y} : y \in Y\}$.

For any independent set $X = \{x_i\}_{i \in I}$, we use the symbol M_X^X to denote any maximal element omitting x_i such that $\lor(X \setminus \{x\}) \leq M_X^X$.

Definition 2.1. [8]

1. Let $X, Y \subseteq L$ and $X = \{x_i\}_{i \in I}, Y = \{y_i\}_{i \in I}$. We say that the pair (X, Y) is a star pair (a \ast-pair) in L iff

 (a) X is an independent set in L such that $\lor X$ is essential in L,

 (b) $\land Y = 0$,

 (c) y_i is a maximal element omitting x_i such that $\lor(X \setminus \{x_i\}) \leq y_i$ is essential in y_i, for every $i \in I$.

2. We say that $Y = \{y_i\}_{i \in I}$ is a star-set (a \ast-set) in L iff (\overline{Y}, Y) is an \ast-pair in L.

3. An algebra A is a star-product (a \ast-product) of algebras $(A_i)_{i \in I}$ if A is a subdirect product of this family such that the set $Y = \{\ker \pi_i\}_{i \in I}$ of congruences on A is a \ast-set. If A is a \ast-product of algebras $(A_i)_{i \in I}$ we use notation $\ast\ast(A_i)_{i \in I}$.

Fig. 1.
Directly from definition we have that for any algebra A, if $Y = \{\theta_i\}_{i \in I}$ is a \oplus-set in $\text{Con}A$ then $A \simeq \bigoplus (A/\theta_i)_{i \in I}$.

It is worth mentioning here that every \oplus-set Y is irredundant, that is, $\bigwedge Y = 0$ and $\bigwedge (Y \setminus \{y\}) \neq 0$ for any $y \in Y$. Moreover, if $|Y| > 1$ then $y \neq 0$ and y is not essential in L for every $y \in Y$.

Theorem 2.2. [8] Let L be a modular lattice. Then

1. if X is an independent set in L and $y \wedge \bigvee X = 0$ for some $y \in L \setminus \{0\}$, then $\{y\} \cup X$ is independent in L,
2. X is a maximal independent set in L iff X is an independent set and $\bigvee X$ is essential in L,
3. If X is a maximal independent set in L such that $|X| > 1$, then $\{M^X_x\}_{x \in X}$ is a \oplus-set, and if $L = \text{Con}A$ then $A \simeq \bigoplus (A/M^X_x)_{x \in X}$,
4. $\{M_X, M^\oplus_X\}$ is a \oplus-set in L for any $\emptyset \neq X \subseteq L$. So, if $L = \text{Con}A$ then $A \simeq A/M_X \oplus A/M^\oplus_X$.

3. **Four kinds of elements and their properties in modular lattices**

We assume in this section that L is an algebraic modular lattice. We consider here four properties of elements in L, namely, belonging to one of the sets $A(L), N(L), T(L)$ or $U(L)$. If there is no confusion, we omit the symbol of the lattice L in notation of omitting elements, for example, we write M_A instead of $M_{A(L)}$ and M^\oplus_A instead of $M^\oplus_{A(L)}$ etc.

The following two facts follow directly from definition:

Fact 3.1. For any $x \in L$

1. if $x \in U(L)$ then $x \notin T(L)$,
2. if $x \in T(L)$ then $x \notin P(L)$ for any $P \in \{A, N, U\}$,
3. if $x \in A(L)$ then $x \notin P(L)$ for any $P \in \{N, T\}$,
4. if $x \in N(L)$ then $x \notin P(L)$ for any $P \in \{A, T\}$.

Fact 3.2. Let $P, Q \in \{A, N, T\}$, $P \neq Q$ and $x \in P(L)$.

1. If $x' \in L \setminus \{0\}$ is such that $x' \leq x$ then $x' \in P(L)$.
2. if $y \in Q(L)$ then $x \wedge y = 0$.

The following fact is a simple consequence of Fact 3.2.
Fact 3.3. For any $P \in \{A,N,T\}$ and for any $y \in L \setminus \{0\}$

1. if $x \in P([0,y])$ then $x \in P(L)$,
2. if $x \in P(L)$ and $x \land y > 0$, then $x \land y \in P([0,y])$.

Proposition 3.4. For any $x \in L \setminus \{0\}$ there exists an $x' \in L \setminus \{0\}$ with $x' \leq x$ such that

1. x' belongs to exactly one of the sets $U(L), T(L)$,
2. x' belongs to exactly one of the sets $A(L), N(L), T(L)$,
3. $M_U \land M_T = 0$ for any M_U, M_T,
4. $M_A \land M_N \land M_T = 0$ for any M_A, M_N, M_T.

Proof. Let $x \in L \setminus \{0\}$. If $x \in T(L)$ then by definition $x' \not\in U(L)$ for every $x' \leq x$. If $x \not\in T(L)$ then there is a $u \in U(L)$ such that $u \leq x$. If $u \in N(L)$ then $u \not\in A(L)$. If $u \not\in N(L)$ then there is an $a \in A(L)$ such that $a \leq u \leq x$. For the proof of (iii) assume that $0 \neq x \in M_U \land M_T$. Then $x \in M_U$ omits all uniform elements, so, by definition, $x \in T(L)$ and hence $x \land M_T = 0$. A contradiction. The proof of (iv) is analogous.

To simplify formulation and proofs of some results we use the following terminology:

Let $\{P,Q,R\} = \{A,N,T\}$. We say that a lattice L:

- is satisfying P iff $P(L) \neq \emptyset$ and $Q(L) = \emptyset = R(L)$,
- is satisfying $\{P,Q\}$ iff $P(L) \neq \emptyset \neq Q(L)$ and $R(L) = \emptyset$.

The next fact shows how some properties of lattices are expressed in this terminology:

Fact 3.5. L is satisfying:

1. A iff L is atomic,
2. N iff L is atomless locally uniform,
3. T iff L is anti-uniform,
4. $\{A,N\}$ then L is locally uniform,
5. $\{N,T\}$ then L is atomless,
6. $\{A,T\}$ then L has no atomless uniform element.

Proof. The proof, based on Proposition 3.4, is very simple. We show (i) as example. If L is satisfying A then $A(L) \neq \emptyset$ and $T(L) = \emptyset = N(L)$. Then for any $x \in L \setminus \{0\}$ there is an atom $a \leq x$ and thus L is atomic. If
Lemma 3.8. Let $P, Q \in \{A, N, T\}$, $P \neq Q$. Then for any M_P, M_P^\otimes the following holds:

1. $M_P \land q > 0$ for any $q \in Q(L)$,
2. $M_P^\otimes \land p > 0$ for any $p \in P(L)$,
3. $M_P^\otimes \land q = 0$ for any $q \in Q(L)$.

Proof. (i) Let $q \in Q(L)$. If $M_P \land q = 0$ then $M_P \lor q > M_P$. By maximality of M_P there exists a $p \in P(L)$ such that $p \leq M_P \lor q$. Use FM1, where $a = q, b = M_P, c = p$. Then $\alpha = (M_P \lor q) \land (M_P \lor p) = M_P \lor p > M_P$. Then $\alpha \land p = (M_P \lor p) \land p = p$ and $\alpha \land q = (M_P \lor p) \land q = q' \leq q$ and thus $[0, p] \simeq [0, q']$, which contradicts Fact 3.2 since $p \in P(L)$ and $q' \leq q \notin P(L)$.

(ii) Let $p \in P(L)$ and assume that $M_P^\otimes \land p = 0$. Then $M_P^\otimes \lor p > M_P^\otimes$ and hence $M_P \land (M_P^\otimes \lor p) > 0$. Notice also that $p \land (M_P \land (M_P^\otimes \lor p)) \leq p \land M_P = 0$. Now use FM1, where $a = M_P, b = p, c = M_P^\otimes$. Then by M2, $\alpha = (M_P \lor p) \land (M_P^\otimes \lor p) = p \lor (M_P \land (M_P^\otimes \lor p)) > p$. Hence there is an isomorphism $\phi: [0, M_P \land \alpha] \rightarrow [0, M_P^\otimes \land \alpha]$ and $M_P \land \alpha > 0$. Thus there exists an $x \in [0, M_P \land \alpha]$ and $R \in \{A, N, T\} \setminus \{P\}$ such that $x \in R(L)$ according to Proposition 3.4. Thus $\phi(x) \in [0, M_P^\otimes \land \alpha] \cap R(L)$. In view of (i) we have $\phi(x) \land M_P > 0$. Therefore $M_P^\otimes \land M_P > 0$, a contradiction.

(iii) Let $q \in Q(L)$. If $q \land M_P^\otimes = q' > 0$ then $q' \land M_P = 0$ and hence $q' \lor M_P > M_P$. By maximality of M_P there exists a $p \in P(L)$ such that $p \leq q' \lor M_P$. Thus, using M1 we get $0 < p' = M_P^\otimes \land p \leq M_P^\otimes \land (M_P \lor q') =
\[M_P^{\oplus} \land ((M_P \land (M_P^{\oplus} \lor q')) \lor q') = M_P^{\oplus} \land ((M_P \land M_P^{\oplus}) \lor q') = M_P^{\oplus} \land q' = q'. \]

Hence \(p' \leq q' \), but \(p' \leq p \in P(L) \) and \(q' \leq q \not\in P(L) \). A contradiction.

Lemma 3.9. Let \(\{P, Q, R\} = \{A, N, T\} \). Then

1. for any \(M_P, M_P^{\oplus} \) there exist \(M_Q, M_R \) such that \(M_P^{\oplus} = M_Q \land M_R \),
2. if \(L \) is satisfying \(\{P, Q\} \) then \(\{M_P, M_Q\} \) is a \(\oplus \)-set in \(L \),
3. if \(A(L), N(L), T(L) \) are all nonempty then for any \(M_T \) there exist \(M_A, M_N \) such that \(\{M_T, M_A, M_N\} \) is a \(\oplus \)-set in \(L \).

Proof.

(i) If \(P(L) = \emptyset \) then \(M_P = 1 \) and \(M_P^{\oplus} = 0 \), and by Proposition 3.4, \(0 = M_P \land M_Q \land M_R = M_Q \land M_R \). Let \(A(L), N(L), T(L) \) be all nonempty. By Lemma 3.8 \(M_P^{\oplus} \) omits \(Q(L) \cup R(L) \), so there are \(M_Q \geq M_P^{\oplus} \) and \(M_R \geq M_P^{\oplus} \). As \(M_Q \land M_R \) omits \(M_P \) and \(M_P^{\oplus} \leq M_Q \land M_R \), by maximality of \(M_P^{\oplus} \) we get \(M_P^{\oplus} = M_Q \land M_R \).

(ii) follows from (i), since \(M_R = 1 \) and then \(M_P^{\oplus} = M_Q \). Due to Theorem 2.2 \(\{M_P, M_Q\} \) is a \(\oplus \)-set in \(L \).

(iii) Let us take \(M_T, M_T^{\oplus} \) and choose \(M_A, M_N \) as in (i).

Let \(Y = \{M_T, M_A, M_N\} \). First we show that that \(\overline{Y} \) is a maximal independent set in \(L \). Recall that (see page 203) \(\overline{Y} = \{\overline{M_T}, \overline{M_A}, \overline{M_N}\} \), where \(\overline{M_T} = M_A \land M_N = M_T^{\oplus}, \overline{M_A} = M_N \land M_T, \overline{M_N} = M_A \land M_T \).

It is easy to see that \(\overline{M_A} \land \overline{M_N} = 0 \). Moreover, \(\overline{M_T} \land (\overline{M_A} \lor \overline{M_N}) = M_T^{\oplus} \land ((M_T \land M_N) \lor (M_T \land M_A)) \leq M_T^{\oplus} \land M_T = 0 \). Due to Theorem 2.2 (i) \(\overline{Y} \) is an independent set.

Now, we show that \(\bigvee \overline{Y} \) is essential in \(L \). Let \(x \in L \setminus \{0\} \), then by Proposition 3.4 there exists an \(x' \) such that \(0 < x' \leq x \) and \(x' \) belongs to exactly one of the sets \(T(L), A(L), N(L) \).

If \(x' \in T(L) \) then \(0 < x' \land M_T^{\oplus} = x' \land \overline{M_T} \).

If \(x' \in A(L) \) then \(0 < x' \land M_T \in A(L) \) then \(0 < (x' \land M_T) \land M_N = x' \land \overline{M_A} \).

If \(x' \in N(L) \) then \(0 < x' \land M_T \in N(L) \) then \(0 < (x' \land M_T) \land M_A = x' \land \overline{M_N} \).

Thus \(x \land \bigvee \overline{Y} \neq 0 \). Hence by Theorem 2.2, \(\overline{Y} \) is a maximal independent set. Thus, to prove that \(Y \) is a \(\oplus \)-set, we have to show that for any \(P \in \{A, N, T\} \), \(M_P = M_Y^{\oplus}_{M_P} \). So, let \(\{P, Q, R\} = \{A, N, T\} \). Then \(M_P \geq \overline{M_Q} \land \overline{M_R} = (M_P \land M_Q) \lor (M_P \land M_R), \) and \(M_P \) omits \(\overline{M_P} \). Hence \(M_P \leq M_Y^{\oplus}_{M_P} \), for any \(P \in \{A, N, T\} \). Obviously, \(M_T = M_Y^{\oplus}_{M_T} = M_U^{\oplus} \), so we will show this equality for \(M_A \) and \(M_N \).
If $M_A < x \leq M_{\overline{M}_A}$, then there exists an $a \in A(L)$ such that $a < x$ and $a \land M_N > 0$ and $a \land M_T > 0$. Thus $0 < a = (a \land M_N) \land (a \land M_T) = a \land (M_N \land M_T) \leq M_{\overline{M}_A} \land \overline{M}_A = 0$. This yields a contradiction. Similarly, if $M_N < x \leq M_{\overline{M}_N}$, then there exists $n \in N(L)$ such that $n < x$ and $n \land M_A > 0$ and $n \land M_T > 0$. Thus $0 < (n \land M_A) \land (n \land M_T) = n \land (M_A \land M_T) \leq M_{\overline{M}_N} \land \overline{M}_N = 0$.

Finally, $\{M_T, M_A, M_N\}$ is a \oplus-set in L.

Lemma 3.10. For any $P \in \{A, N, T\}$ and M_P, M_P^{\oplus}

1. if $A(L), N(L), T(L)$ are all nonempty then

 (a) $[0, M_P]$ and $[M_P^{\oplus}, 1]$ are satisfying $\{Q, R\} = \{A, N, T\} \setminus \{P\}$,

 (b) $[M_P, 1]$ and $[0, M_P^{\oplus}]$ are satisfying P,

2. if L is satisfying $\{P, Q\}$, then

 (a) $[0, M_P]$ and $[M_P^{\oplus}, 1]$ are satisfying Q,

 (b) $[M_P, 1]$ and $[0, M_P^{\oplus}]$ are satisfying P.

Proof. (i) (a) If $x \in P([0, M_P])$ then $x \in P(L)$, but M_P omits $P(L)$, so $P([0, M_P]) = \emptyset$. Let $\{Q, R\} = \{A, N, T\} \setminus \{P\}$. If $x \in Q(L)$ or $x \in R(L)$ then $0 < x \land M_P \in Q(L)$ or $0 < x \land M_P \in R(L)$. Hence $[0, M_P]$ is satisfying $\{Q, R\}$. Then by the Isomorphism Theorem $[M_P^{\oplus}, M_P \lor M_P^{\oplus}]$ is satisfying $\{Q, R\}$. Thus $Q([M_P^{\oplus}, 1]) \neq \emptyset$ and $R([M_P^{\oplus}, 1]) \neq \emptyset$, and $P([M_P^{\oplus}, M_P \lor M_P^{\oplus}]) = \emptyset$.

If $x \in P([M_P^{\oplus}, 1])$, then $M_P^{\oplus} < x' = (x \land M_P) \lor M_P^{\oplus} \leq M_P \lor M_P^{\oplus}$, and $x' \leq x$, thus $x' \in P([M_P^{\oplus}, M_P \lor M_P^{\oplus}]) = \emptyset$. A contradiction. Other statements have analogous proofs.

There are some interesting consequences of the last proposition, because we obtain some ‘bottom’ parts of the lattice, which have specific properties, and similarly, ‘top’ parts. The ‘bottom’ parts have a crucial role in finding bases and dimensions of lattices (see [8]). The ‘top’ parts are used in \oplus-decompositions of algebras. For example, if L is locally uniform not atomic nor atomless, then L has a ‘bottom’ atomic part $[0, M_N]$ and a ‘bottom’ atomless part $[0, M_A]$ and has a ‘top’ atomic part $[M_A, 1]$ and a ‘top’ atomless part $[M_N, 1]$.
4. Star-decomposition of congruence modular algebras

We apply the results of the last section to congruence lattices of congruence modular algebras. The following proposition, which describes \ast-decomposition of algebras into congruence atomic, congruence atomless locally uniform and congruence anti-uniform parts, is a straightforward consequence of Lemmas 3.9, 3.10 and the Correspondence Theorem.

Theorem 4.1. Let A be a nontrivial congruence modular algebra and $L = \text{Con}A$. Let $\{P, Q, R\} = \{A, N, T\}$. Then

1. if L is satisfying $\{P, Q\}$ then $A \simeq A/M_P \ast A/M_Q$ and A/M_P is congruence satisfying P and A/M_Q is congruence satisfying Q,
2. if $A(L), N(L), T(L)$ are all nonempty, then for any M_T there exist M_A, M_N such that $A \simeq A/M_T \ast A/M_A \ast A/M_N$, and A/M_T is congruence anti-uniform, A/M_A is congruence atomic, A/M_N is congruence atomless locally uniform.

Substituting for P, Q, some properties from $\{A, N, T\}$ we can obtain the following:

Corollary 4.2. Let A be a nontrivial congruence modular algebra and $L = \text{Con}A$.

1. If L is satisfying $\{A, N\}$ then A is congruence locally uniform and $A \simeq A_1 \ast A_2$, where A_1 is congruence atomic and A_2 is congruence atomless locally uniform.
2. If L is satisfying $\{N, T\}$ then A is congruence atomless and $A \simeq A_1 \ast A_2$, where A_1 is congruence atomless locally uniform and A_2 is congruence anti-uniform.
3. If L is satisfying $\{A, T\}$ then A has no atomless uniform element in its congruence lattice and $A \simeq A_1 \ast A_2$, where A_1 is congruence atomic and A_2 is congruence anti-uniform.
4. If $A(L), N(L), T(L)$ are all nonempty, then $A \simeq A_1 \ast A_2 \ast A_3$, where A_1 is congruence anti-uniform, A_2 is congruence atomic, A_3 is congruence atomless locally uniform.

The next proposition answers the question if properties of factors in a subdirect decomposition of the given algebra can be preserved in some \ast-decomposition of this algebra.
Theorem 4.3. Let A, B_1 and B_2 be nontrivial congruence modular algebras. Assume that A is a subdirect product of algebras B_1 and B_2. Then

1. if A is congruence satisfying $\{P, Q\}$, and B_1 is congruence satisfying P and B_2 is congruence satisfying Q, then there exist algebras A_1, A_2 such that

 (a) A_i is a homomorphic image of B_i for $i = 1, 2$,

 (b) A_1 is congruence satisfying P, A_2 is congruence satisfying Q,

 (c) $A \simeq A_1 \oplus A_2$.

2. if $A(L), N(L), T(L)$ are all nonempty, and $\{P, Q, R\} = \{A, N, T\}$, and B_1 is congruence satisfying P and B_2 is congruence satisfying $\{Q, R\}$, then there exist algebras A_1, A_2 such that

 (a) A_i is a homomorphic image of B_i for $i = 1, 2$,

 (b) A_1 is congruence satisfying P, A_2 is congruence satisfying $\{Q, R\}$,

 (c) $A \simeq A_1 \oplus A_2$.

Proof. In both cases, let $\theta_1 = ker \pi_1$, $\theta_2 = ker \pi_2$, where π_i is the i-th projection from A onto B_i. Then $\theta_1 \land \theta_2 = 0$ and $\theta_1, \theta_2 < \theta_1 \lor \theta_2$.

(i) By the Correspondence Theorem $[\theta_1, 1]$ is satisfying P, so $[\theta_1, \theta_1 \lor \theta_2]$ is satisfying P, and thus $[0, \theta_2]$ is satisfying P. Similarly, $[\theta_2, 1]$ is satisfying Q, hence $P([\theta_2, 1]) = \emptyset$. Then $P([\theta_2, \theta_1 \lor \theta_2]) = P([0, \theta_1]) = \emptyset$. Thus θ_1 omits $P(L)$, so $\theta_1 \leq M_P$ for some M_P. On the other side θ_2 omits M_P, so $\theta_2 \leq M_P^\sigma$ for some M_P^σ. Moreover, $[M_P, 1]$ is satisfying P, $[M_P^\sigma, 1]$ is satisfying Q and $\{M_P, M_P^\sigma\}$ is a \oplus-set in L. Hence $A_1 = A/M_P$ is a homomorphic image of B_1 and $A_2 = A/M_P^\sigma$ is a homomorphic image of B_2 and $A \simeq A_1 \oplus A_2$.

(ii) Analogously, there exist M_P, M_P^σ such that $\theta_1 \leq M_P, \theta_2 \leq M_P^\sigma$, and moreover, $[M_P, 1]$ is satisfying P, $[M_P^\sigma, 1]$ is satisfying $\{Q, R\}$ and $\{M_P, M_P^\sigma\}$ is a \oplus-set in L. Hence $A_1 = A/M_P$ is a homomorphic image of B_1 and $A_2 = A/M_P^\sigma$ is a homomorphic image of B_2 and $A \simeq A_1 \oplus A_2$.

Notice that M_P, M_P^σ are uniquely determined in distributive algebraic lattices, so all the \oplus-decompositions described in this section are uniquely determined for congruence distributive algebras e.g. lattices and Boolean algebras.
References

Department of Mathematics and Computer Science
University of Warmia and Mazury, Olsztyn, Poland
bstar@uwm.edu.pl, bostar@matman.uwm.edu.pl